Dual-Server Public-Key Encryption with Keyword Search for Secure Cloud Storage

Searchable encryption is of increasing interest for protecting the data privacy in secure searchable cloud storage. In this work, we investigate the security of a well-known cryptographic primitive, namely Public Key Encryption with Keyword Search (PEKS) which is very useful in many applications of cloud storage. Unfortunately, it has been shown that the traditional PEKS framework suffers from an inherent insecurity called inside Keyword Guessing Attack (KGA) launched by the malicious server. To address this security vulnerability, we propose a new PEKS framework named Dual-Server Public Key Encryption with Keyword Search (DS-PEKS). As another main contribution, we define a new variant of the Smooth Projective Hash Functions (SPHFs) referred to as linear and homomorphic SPHF (LH-SPHF). We then show a generic construction of secure DS-PEKS from LH-SPHF. To illustrate the feasibility of our new framework, we provide an efficient instantiation of the general framework from a DDH-based LH-SPHF and show that it can achieve the strong security against inside KGA.